Off-Grid Solar Systems

for Radio Sites

Presented by Marcel Stieber AI6MS

Presented at the Pacificon Amateur Radio Convention

San Ramon, CA – Saturday, October 20th, 2018

Who is this guy?

- Marcel Stieber, AI6MS
- Licensed in 2008 as KI6QDJ
- Master's in Electrical Engineer
- Cal Poly Amateur Radio Club
- Cupertino ARES Repeater Trustee
- All Out Events Comms Director
- Salinas Valley Repeater Group
- Playing with solar since 1995 2010
- Currently have 2 off-grid radio sites
 - One running non-stop since 2016

Abstract

This presentation will walk through the system design for off-grid solar-powered radio sites including power budgets, equipment selection, and maintenance. We'll use a case study to explore specific design details and decisions to help you deploy your first fully-off-grid solar-power radio site!

A brief show of hands

Forum Overview

- Intro to Solar Systems
- DC Loads
- Battery
- Solar Panels
- Solar Controller
- Deployment!
- Maintenance

Photo from WB6ECE

Intro to Solar Systems

Why solar?

- You need power for your radios!
- Getting grid power is expensive
- Off-Grid gives you independence
- Low-operating costs

Residential vs Radio Site

- Residential
 - Usually requires an inverter for AC loads
 - Microwaves, fridges, TVs, etc.
- Radio sites
 - Everything can run DC!?

Assumptions

- Off-Grid (no AC power)
- DC Loads only (no inverters)
- Design using off-the-shelf solutions

Mental Model

- Off-Grid Systems are designed for the WORST CASE
 - Shortest days of sunlight (winter)
 - Coldest temperatures
 - Cloudiest days
 - Maximum system loads
- Goal is to get to 100% Up-Time!

Our Case Study

- Cupertino ARES ARKnet Project
- Wireless Intranet Client Site
- Equipment supported
 - Uplink Radio
 - Wireless Access Point
 - Webcam
 - Analog Telephone Adapter

DC Loads

What are you doing with this?

- Weather Station
- Repeater Site
- APRS Digipeater
- Mesh Network Node
- Remote Base

How much power do you need?

- Need total Watt-Hours Per Day of usage
- Some rough examples:
 - 50 watt repeater site 100% duty cycle
 - Ex: Yaesu DR2X (13A on TX) = \sim 150 watts DC
 - 24hrs/day = 5760 watt-hours/day
 - 50 watt repeater site 10% duty cycle
 - ~20 watts RX
 - (20W x 90% + 150W x 10%) x 24hrs = **792 watt-hours/day**
 - 10 watt digipeater
 - @100% duty cycle = **240 watt-hours/day**

Case Study: Online load calculator!

- https://www.altestore.com/store/calculators/load_calculator/
- Be sure to include everything at the site!

Appliance/Load Name	On at Same Time*	Quantity	AC Watts	AC Surge*	DC Watts*	Hours On per Day	Watt- Hours / Day
Uplink Radio	V	1	0		12	24	288
Wireless Access Point	V	1	0		8	24	192
Webcam	V	1	0		3.75	24	90
Analog Telephone Adap	V	1	0		6	24	144
Ethernet Switch	V	1	0		7.5	24	180
Add load							

Add load

Total Watt-Hours/Day: 894

"Values only needed if you want a system which operates with batteries (e.g. an off-grid solar system)

Batteries!

Batteries

- Typically:
 - Deep-Cycle Lead-Acid
 - 12 Volts (plus series/parallel configurations)
 - 35-200Ah Capacity per battery
 - Low-cost per Ah

Universal UB121000-45978 12v 100AH Deep Cycle AGM Battery by Universal Power Group

\$14493 + \$15.01 shipping

2pcs WindyNation 100 amp-hour 100AH 12V 12 Volt AGM Deep Cycle 100 amp-hour)

by WindyNation

\$41399 yprime

Battery Bank Sizing

- Start with the Daily Energy Usage
- Then apply Derating:
 - Days without sun or reduced sun
 - How many days of backup power do you need?
 - Cloudy days produce only 20-40% solar output
 - Battery temperature
 - Colder temps are worse
 - Depth of Discharge
 - Less is more!
- Typically use 3 days to 50% DOD

Case Study: Battery Sizing

- 894 watt-hours/day
- 3 backup days
- Temperature derating for 30°F = 1.40
- 50% depth of discharge
- $(894Whr/day) * (3 days) * 1.40 / (50\%) \approx 7510Wh$
- Then divide by the battery system voltage (24V) to get the minimum Amp-hour Capacity of your battery bank
- 7510Whr/24V ≈ 313Ah

Battery Bank Sizing

This calculator will help you size the battery bank for your system.

STEP 1:

Your Dally Energy Usage

Watt Hours per Day: 894

STEP 2:

How Many Days Should Your System Run without Sun?

3

STEP 3:

Adjust the Effective Capacity of Your Battery Bank Due to Low Temperatures

What is the lowest temperature your battery bank will experience?

30F (-1C) ▼ Degrees

RESULTS:

Battery Bank Capacity: 8637 watt hours

Select a battery bank voltage 24 ▼

Battery Bank Capacity: 360 amp hours

3 String Configuration: 120 amp hours per string

• https://www.altestore.com/store/calculators/off grid calculator/

Case Study: What's this look like?

- Our "little" ARKnet radio site would need:
 - ~4 x 200Ah 12V batteries
 - Or 8 x 100Ah 12V batteries

Renogy Deep Cycle Pure Gel Battery 12V 200Ah by Renogy

\$43892 prime

Sponsored ①
NPP NP6-200Ah 6V 200Ah AGM Deep Cycle
by NPP

\$20999

Universal UB121000-45978 12v 100AH

by Universal Power Group

\$14493 + \$15.01 shipping

Sponsored (i)

Aims LFP12V200A Black 12V Lithium Battery 200Ah by Aims

\$1,71986 prime

Case Study: What do you actually need?

- Critical to get your load calculations right!
- Lots of factors come into play:
 - Actual duty cycle
 - Actual measurements vs datasheet
 - Expected usage and worst-case planning

Only 18 Watts!

(vs 37 watts)

Battery Bank Sizing

This calculator will help you size the battery bank for your system.

STEP 1:

Your Dally Energy Usage

Watt Hours per Day: 450

STEP 2:

How Many Days Should Your System Run without Sun?

2

STEP 3:

Adjust the Effective Capacity of Your Battery Bank Due to Low Temperatures

What is the lowest temperature your battery bank will experience?

30F (-1C) ▼ Degrees

RESULTS:

Battery Bank Capacity: 2691 watt hours

Select a battery bank voltage 24 ▼

113Ah vs 360Ah!

Battery Bank Capacity: 113 amp hours

3 String Configuration: 38 amp hours per string

• https://www.altestore.com/store/calculators/off-grid-calculator/

Case Study: 100Ah @ 24V

Solar Panel

Solar Panel Mental Model

- Grid-Tied Maximize Annual Production
- Off-Grid Max power on the shortest day
 - Use the shortest day of the year
 - In the northern hemisphere, point due south
 - Match the angle of the sun in the winter

Solar Panel Sizing

- How much sun?
 - Peak Sunlight Hours
- How much power?
 - Our previous watt-hours/day

Peak Sunlight Hours

- Hours where sunlight is >1000 watts per sq. meter
- 7 hrs of daylight may only be 3-4 peak sun-hours
- Insolation map
 - Average peak sun-hours for the shortest day*
 - *aka the darkest time of year (winter solstice)
 - Examples**:
 - San Francisco, CA 3.4 hrs
 - New York, NY 2.8 hrs
 - Seattle, WA 1.4 hrs
 - Tucson, AZ 5.1 hrs
 - Fairbanks, AK 0.3 hrs

Case Study: Solar Panel Sizing

- Daily Energy Usage / Peak Sunlight Hours
 - 450 Whr/day / 3.4 hrs = 132 W/day
- This would be:
 - 2 x 100W solar panels
 - 1 x 200W solar panel (more headroom!)

See Size Options

HQST 100 Watt 12 Volt Polycrystalline Solar Panel by HQST \$10299 \$139.99

ALTE 200 WATT 24V POLY SOLAR PANEL

\$189.00

Case Study: Solar Panel Specs

- Renogy 250 Watt Polycrystalline Solar Panel
- Maximum Power: 250W
- Open-Circuit Voltage (Voc): 37.30V
- Short-Circuit Current (Isc): 8.84A

Solar Controller

Solar Controller Types

- PWM (Pulse Width Modulated)
 - Pros: Small and cheap
 - Cons: lower efficiency, tighter matching required

HQST 30 Amp PWM Smart Solar Charge Controller by HQST

\$2899 prime | FREE One-Day

- MPPT (Maximum Power Point Tracking)
 - Pros: highest efficiency, very compatible
 - Cons: expensive

HQST 30A MPPT Solar Charge Controller by HQST

\$101⁹⁹ vprime

Solar Controller Sizing

- Key Factors:
 - Total Solar Panel Wattage
 - Battery Voltage
 - DC Load Peak Current
 - Max Input Voltage (Solar Panel Open-Circuit Voltage)

20A Commander MPPT Controller

Nominal system voltage	12V/24V Auto Recognition		
Max. PV Input Short Current	25A		
Battery Voltage Range	8V -32V		
Max. Solar Input Power	12V@260W 24V@520W		
Self -Consumption	1.4W to 2.6W		

Case Study: Controller Sizing

• 250W panel, 24V batteries, 2A load, 37.30Voc, 8.84Isc

Model	CMD-20	CMD-40		
Nominal system voltage	12V/24V Auto Recognition			
Rated Battery Current	20A	40A		
Rated Load Current	20A	20A		
Max. PV Input Short Current	25A	50A		
Battery Voltage Range	8V-32V 🗸			
Max Solar Input Voltage	150 VDC @ Minimum Working Temperature			
	138 VDC @ 25°C			
Max. Solar Input Power	12V @ 260W	12V @ 520W		
	24V @ 520W 🗸	24V @ 1040W		
Self-Consumption	≤60mA @ 12V			
	≤30mA @ 24V			
Grounding	Negative			
Charge circuit voltage drop	≤ 0.26V			
Discharge circuit voltage	≤ 0.15V			
drop				
Temp. Compensation	-3mV/°C/2V (default)			
Communication	RSJ45			

Deployment!

Maintenance

Maintenance Considerations

- Battery replacement
 - Typically 5 year lifetime
 - Cycling and temperature dependent
 - Most costly part of maintenance
- Panel cleaning
 - Easy to forget

Only 2 months later...

More Extreme Cases

Questions - Comments - Discussion

Presentation will be available at: www.QRZ.com/db/AI6MS Marcel Stieber, AI6MS@arrl.net

Want me to speak to your club or organization? Need a volunteer tower climber? Contact me!

References and Further Reading

- https://aeesolar.com/wp-content/uploads/2017/01/2017DC-Off-Grid-System-Design.pdf
- https://www.altestore.com/store/calculators/load calculator/
- https://www.altestore.com/store/calculators/off-grid-calculator/
- https://www.altestore.com/howto/solar-insolation-map-world-a43/
- https://aeesolar.com/wp-content/uploads/2017/01/2017DC-Off-Grid-System-Design.pdf
- https://www.altestore.com/howto/how-to-size-a-deep-cycle-battery-bank-a94/
- https://www.altestore.com/howto/how-to-size-a-deep-cycle-battery-bank-a94/

References:

- https://mozaw.com/diy-off-grid-solar-system/
- https://en.wikipedia.org/wiki/List of cities by sunshine duration
- https://www.solarpowerauthority.com/how-to-calculate-your-peak-sun-hours/
- https://www.solartechnology.co.uk/support-centre/calculating-your-solar-requirments